- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Barnes, JD (1)
-
Brown, SE (1)
-
Bucheli-Olaya, C (1)
-
Cooperdock, EHG (1)
-
Lackey, Jade Star (1)
-
Villasano, E (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ongoing investigations of halogen element (F, Cl, Br, I) concentrations in rocks and minerals in the Cretaceous Sierra Nevada Batholith, CA, aim to elucidate the spatio-temporal distribution and budget of these important elements in a “typical” continental convergent margin arc. Using a 3.0 kW Axios (Panalytical) wavelength-dispersive X-ray fluorescence spectrometer (XRF) equipped with a Ge 111 crystal to eliminate second order interferences on Cl-Kα lines, the Pomona College XRF lab has undertaken a campaign-style study of Cl in pressed powder samples of metamorphic and metavolcanic rocks in the Sierra. This work complements pyrohydrolysis + ion chromatography (IC) and ICP-MS analyses the research team is undertaking at the University of Texas – Austin. Both labs quadruply wash powders to eliminate Cl contributions from decrepitated fluid inclusions or grain boundary deposits. Intercomparison between the two labs show correlation (r2 = 0.98) between analyses of the same unknown samples, but decreased accuracy of XRF (>30% relative) below 30 µg/g. Despite lower precision, XRF characterization is a relatively rapid and less labor intensive means to identify key Cl variations among rock types and to select samples for full analysis of all four halogen elements by pyrohydrolysis + IC (Cl,F) and ICP-MS (Br,I). Results thus far indicate that Mg- to Al-rich pelites ranging in metamorphic grade from phyllite to migmatite vary widely in Cl: 50–500 µg/g; cordierite-biotite hornfels are typically elevated in Cl (200–400 µg/g) and other lithologies such as skarns and amphibolite are highly varied (50–600 µg/g Cl); a localized study of a high temperature (650–750°C) migmatites surrounding a gabbro-diorite complex shows low and relatively uniform Cl (100 ± 50 µg/g) in the migmatites. This fundings suggests that Cl may have been mobilized into melts during biotite dehydration melting in the migmatites. Metavolcanic rocks vary from 20 to over 2000 µg/g Cl, suggesting post-eruptive exchange with exogenous fluids during hydrothermal alteration and metamorphism. Metavolcanic packages in different pendants, screens and septa show some localized patterns in Cl concentration that are being explored further.more » « less
An official website of the United States government

Full Text Available